Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

catena-Poly[[(di-2-pyridylamine)-silver(I)]- μ-nicotinato] and catena-poly[[(di-2-pyridylamine)silver(I)]-μ-2,6-dihydroxybenzoato]

Yue Wang ${ }^{\text {a }}$ and Nobuo Okabe ${ }^{\text {b* }}$

${ }^{\text {a Laboratory of Inorganic Chemistry, China Pharmaceutical University, Nanjing }}$ 210009, People's Republic of China, and ${ }^{\mathbf{b}}$ Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
Correspondence e-mail: okabe@phar.kindai.ac.jp

Received 12 October 2004
Accepted 19 October 2004
Online 11 November 2004
In catena-poly[[(di-2-pyridylamine- $\left.\kappa^{2} N, N^{\prime}\right)$ silver(I)]- μ-nico-tinato- $\left.\kappa^{2} N: O\right],\left[\mathrm{Ag}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\right]_{n}$, the Ag^{I} atom is tetracoordinated by two N atoms from the di-2-pyridylamine (BPA) ligand $[\mathrm{Ag}-\mathrm{N}=2.3785$ (18) and 2.3298 (18) \AA] and by one N atom and one carboxylate O atom from nicotinate ligands $[\mathrm{Ag}-\mathrm{N}=2.2827$ (15) \AA and $\mathrm{Ag}-\mathrm{O}=2.3636$ (14) \AA]. Bridging by nicotinate N and O atoms generates a polymeric chain structure, which extends along [100]. The carboxyl O atom not bonded to the Ag atom takes part in an intrachain $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, further stabilizing the chain. Pairs of chains are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to generate ribbons. There are no $\pi-\pi$ interactions in this complex. In catena-poly[[(di-2-pyridylamine- $\left.\kappa^{2} N, N^{\prime}\right)$ silver(I)]- μ-2,6-di-hydroxybenzoato- $\left.\kappa^{2} O^{1}: O^{2}\right], \quad\left[\mathrm{Ag}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\right]_{n}$, the Ag^{I} atom has a distorted tetrahedral coordination, with three strong bonds to two pyridine N atoms from the BPA ligand $[\mathrm{Ag}-\mathrm{N}=2.286$ (5) and 2.320 (5) \AA] and to one carboxylate O atom from the 2,6-dihydroxybenzoate ligand $[\mathrm{Ag}-\mathrm{O}=$ 2.222 (4) $\AA]$; the fourth, weaker, Ag -atom coordination is to one of the phenol O atoms [Ag. $\mathrm{O}=2.703(4) \AA$] of an adjacent moiety, and this interaction generates a polymeric chain along [100]. Pairs of chains are linked about inversion centers by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form ribbons, within which there are $\pi-\pi$ interactions. The ribbons are linked about inversion centers by pairs of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and additional $\pi-\pi$ interactions between inversion-related pairs of 2,6-dihydroxybenzoate ligands to generate a three-dimensional network.

Comment

Silver(I) complexes with $\mathrm{Ag}-\mathrm{N}$ bonds have been found to show effective antimicrobial activity (Spadaro et al., 1974; Nomiya et al., 1997), and silver compounds with pyridine or its derivatives have attracted attention recently (Zhu et al., 2001, 2003; Bi et al., 2002; Kristiansson, 2000). Among the
compounds containing a pyridine ring, nicotinic acid (3-pyridinecarboxylic acid, niacin or vitamin B; henceforth NA) plays important roles in metabolism. Dihydroxybenzoic acids are known to be strong antioxidants (Maoka et al., 1997). As one example, 2,6-dihydroxybenzoic acid ($2,6-\mathrm{DHB}$) is known to have a cytotoxic effect on tumor cells at low pH values when mixed with acetylsalicylic acid (Kreutz, 1998). Moreover 2,6-DHB always shows versatile coordination modes in its complexes. We report here the structures of two Ag^{I} complexes, viz. compound (I) with NA and the bidentate pyridine-based ligand 2,2'-bipyridylamine (BPA), viz. [Ag(NA)(BPA) $]_{n}$, and compound (II) with $2,6-\mathrm{DHB}$ and BPA, viz. $[\mathrm{Ag}(2,6-\mathrm{DHB})(\mathrm{BPA})]_{n}$.

(I)

(II)

Compound (I) comprises a one-dimensional polymer chain (Fig. 1), with each Ag^{I} atom coordinated to two N atoms from a BPA ligand, one N atom from a nicotinate ligand and one carboxylate O atom from another nicotinate ligand [at (1+x, $y, z)$], as shown in Fig. 1; geometric details are given in Table 1. The coordination geometry of the Ag^{I} ion is best described as distorted tetrahedral. The carboxyl atom that is not bonded to the Ag atom (O1) takes part in an intrachain $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, further stabilizing the chain (Table 2).

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of part of the polymeric chain in (I), with the atomic numbering scheme. Displacement ellipsoids for nonH atoms are drawn at the 30% probability level. [Symmetry codes: (A) $x-1, y, z ;(B) 1+x, y, z$.]

The coordination mode of (I) can be compared with some previous findings for silver(I)-nicotinic acid systems. In catena-(pyridine-3-carboxylato- O, O^{\prime}) silver(I) (Smith \& Reddy, 1994), the Ag^{I} ion has a trigonal coordination geometry, being connected to three nicotinate residues, two via carboxylate O atoms and the third through the pyridine N atom $[\mathrm{Ag}-\mathrm{O}=2.258$ (8) and 2.280 (8) \AA, and $\mathrm{Ag}-\mathrm{N}=$ 2.362 (10) Å]; in ammonium bis(pyridine-3-carboxylatoO, N, N^{\prime}) silver(I) monohydrate (Smith \& Reddy, 1994), the Ag^{I} ion again has three-coordinate distorted trigonal-planar geometry and is bonded to two pyridine N atoms and one carboxylate O atom from three independent nicotinate ligands $[\mathrm{Ag}-\mathrm{N}=2.248(3)$ and $2.269(3) \AA$, and $\mathrm{Ag}-\mathrm{O}=$ $2.342(2) \AA$. The Ag^{I} coordination mode in (I) is also different from that reported in catena-bis(pyridine-3-carboxylato- N, N^{\prime})silver(I) (Käll et al., 2001), where the Ag^{I} ion has distorted octahedral coordination geometry, lies on an inversion center with the N atoms in axial positions $(\mathrm{Ag}-\mathrm{N}=$ $2.234 \AA$ and $\mathrm{N}-\mathrm{Ag}-\mathrm{N}=180^{\circ}$) and is bonded weakly to four carboxylate O atoms from four independent nicotinate molecules $(\mathrm{Ag}-\mathrm{O}=2.803$ and $2.821 \AA)$. The $\mathrm{Ag}-\mathrm{N}$ distances in (I) are slightly longer than those in silver complexes of other pyridine derivatives, such as bis(3-amino-2-chloropyridine$\kappa N)$ silver(I) perchlorate [2.197 (4)-2.199 (4) Å; Li et al., 2002], $\operatorname{bis}\left(2-\right.$ aminopyridine- $\left.\kappa N^{1}\right)($ benzoato- $\kappa O)$ silver(I) $\quad[2.205$ (4)2.230 (3) Å; Zhu et al., 2003] and catena-poly[[silver(I)- $\mu-4,4^{\prime}-$ bipyridine] nitrate] [2.211 (4) Å; Bi et al., 2002].

In the nicotinate ligand, the plane of the carboxyl group ($\mathrm{C} 3 / \mathrm{C} 7 / \mathrm{O} 1 / \mathrm{O} 2$) is rotated $10.7(1)^{\circ}$ around the exocyclic $\mathrm{C} 3-$ C 7 bond out of the N1/C2-C7 plane. The two pyridine rings in the BPA ligand form an interplanar angle of $9.7(1)^{\circ}$, and the

Figure 2
A view of a pair of inversion-related chains linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to generate a ribbon extending in the a direction. Hydrogen bonds are indicated by broken lines. [Symmetry codes: (\#) $-x$, $-y, 1-z ;\left({ }^{*}\right) 1+x, y, z$.]
six-membered $\mathrm{Ag} 1 / \mathrm{N} 11 / \mathrm{C} 12 / \mathrm{N} 3 / \mathrm{C} 22 / \mathrm{N} 21$ ring has a slightly deformed envelope conformation, with atom Ag 1 as the flap.

In the crystal structure (Fig. 2), pairs of inversion-related chains are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) to generate ribbons extending along [100]. Calculations with PLATON (Spek, 2003) show that there are only van der Waals interactions between the ribbons.

Figure 3
An ORTEP-3 (Farrugia, 1997) drawing of part of the polymeric chain in (II), with the atomic numbering scheme. Displacement ellipsoids for nonH atoms are drawn at the 30% probability level. [Symmetry codes: (A) $x-1, y, z ;(B) 1+x, y, z$.]

Figure 4
A view of a pair of inversion-related chains linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to generate a ribbon extending in the a direction. The weak Ag...O contact and hydrogen bonds are indicated by broken lines. [Symmetry codes: (\#) $1-x, 1-y, 1-z ;(*) 1+x, y, z ;(\$) x-1, y, z$.]

Figure 5
A stereoview along the a direction of part of the structure of (II), showing $\pi-\pi$ interactions between inversion-related pairs of BPA ligands and between inversion-related pairs of 2,6-DHB ligands.

In complex (II) (Fig. 3), the Ag^{I} atom has a distorted tetrahedral coordination, with three strong bonds to two pyridine N atoms from the BPA ligand and one carboxylate O atom from the 2,6-DHB ligand; the fourth, weaker, Ag-atom coordination is to one of the phenol O atoms (O61) of an adjacent moiety (Table 3), thus generating a polymeric chain along [100]. BPA atoms N11 and N12 together with carboxyl atom O 2 are the atoms that are strongly bonded to atom Ag 1 ; these atoms define a trigonal plane, with atom Ag 1 lying 0.319 (2) A from the plane.

In the 2,6-DHB ligand, the plane of the carboxyl group (C3/ $\mathrm{C} 7 / \mathrm{O} 1 / \mathrm{O} 2$) is rotated 2.4 (3) ${ }^{\circ}$ around the exocyclic $\mathrm{C} 1-\mathrm{C} 7$ bond out of the $\mathrm{C} 1-\mathrm{C} 7$ plane. Both phenol OH groups form intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 4) with adjacent carboxyl O atoms. The two pyridine rings in the BPA ligand form an interplanar angle of $5.2(2)^{\circ}$, and as in (I), the six-membered $\mathrm{Ag} 1 / \mathrm{N} 11 / \mathrm{C} 12 / \mathrm{N} 3 / \mathrm{C} 22 / \mathrm{N} 21$ ring has a slightly deformed envelope conformation, with atom Ag 1 as the flap. The participation of the BPA ligand means that the Ag coordination environment in (II) is (as expected) completely different from the dimer-bridged coordination mode reported for the 2,6-DHB ligand in bis (μ_{2}-2,6-dihydroxybenzoatoO, O^{\prime})disilver(I) (Smith et al., 1988).

In the crystal structure of (II), inversion-related chains are linked [as in (I)] by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the BPA N3-H3 group and carboxyl atom O1 of an adjacent moiety (Table 1), thus generating ribbons extending along [100], as shown in Fig. 4. Also present in these ribbons are $\pi-\pi$ interactions between inversion-related BPA ligands. The distance between the ring centroids of the N11/C12-C16 and $\mathrm{N} 21 / \mathrm{C} 22-\mathrm{C} 26$ [at $(1-x, 1-y, 1-z)$] BPA pyridine rings is $3.616 \AA$ and the shortest atom-atom separation is 3.466 (9) \AA, between atoms C 12 and $\mathrm{C} 22(1-x, 1-y, 1-z)$. This ring overlap can be seen clearly in Fig. 5, which also shows that the ribbons are linked by an inter-ribbon $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond involving the $\mathrm{C} 25-\mathrm{H} 25$ group and phenol atom $\mathrm{O} 21(x$, $y-1, z$), which is not involved in any Ag contact (see Table 4). There are, in addition, a second set of $\pi-\pi$ interactions between inversion-related 2,6-DHB ligands. The centroid of
the C1-C6 aromatic ring at (x, y, z) is $3.763 \AA$ from the centroid of the same ring at $(2-x, 2-y,-z)$; the distance between these parallel rings is $3.425 \AA$ and the shortest $\mathrm{C} \cdots \mathrm{C}$ contact is 3.413 (3) \AA, between atoms C 2 and $\mathrm{C} 6(2-x, 2-y$, $-z$). The overall effect of all these interactions is to generate a three-dimensional network.

Experimental

Thin colorless needle-shaped crystals of (I) were obtained by slow evaporation of an aqueous solution (containing a small amount of methanol) of a mixture of nicotinic acid, 2,2'-bipyridineamine and AgNO_{3} (molar ratio 1:1:1) at room temperature. Colorless prismatic crystals of (II) were obtained by slow evaporation of a mixture of 2,6-dihydroxybenzoic acid, 2,2'-bipyridineamine and AgNO_{3} (molar ratio $4: 4: 1$) in methanol/water (80%) at room temperature.

Compound (I)

Crystal data
$\left[\mathrm{Ag}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\right.$

$$
D_{x}=1.718 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$M_{r}=401.17$
Monoclinic, $P 2_{1} / n$
$a=7.9623$ (1) \AA
$b=8.9487$ (1) \AA
$c=21.887$ (1) \AA
$\beta=96.000(1)^{\circ}$
$V=1550.95(8) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 12577
reflections
$\theta=3.0-27.5^{\circ}$
$\mu=1.31 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Needle, colorless
$0.30 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.649, T_{\text {max }}=0.877$
15058 measured reflections
3530 independent reflections
2779 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=27.6^{\circ}$
$h=-10 \rightarrow 10$
$k=-11 \rightarrow 11$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.055$
$S=0.90$
3530 reflections
208 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0291 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.47 \mathrm{e}_{\mathrm{A}} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$ for (I).

$\mathrm{Ag} 1-\mathrm{N} 1$	$2.2827(15)$	$\mathrm{Ag} 1-\mathrm{N} 21$	$2.3298(18)$
$\mathrm{Ag} 1-\mathrm{N} 11$	$2.3785(18)$	$\mathrm{Ag} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.3636(14)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 21$	$125.12(6)$	$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 11$	$105.36(6)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{O} 2^{\mathrm{i}}$	$128.08(5)$	$\mathrm{N} 21-\mathrm{Ag} 1-\mathrm{N} 11$	$77.97(6)$
$\mathrm{N} 21-\mathrm{Ag} 1-\mathrm{O} 2^{\mathrm{i}}$	$99.28(6)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{N} 11$	$109.43(6)$

Symmetry code: (i) $1+x, y, z$.

Table 2
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{O}^{2 i}$	0.86	2.03	$2.894(2)$	177
$\mathrm{C}^{\mathrm{ii}} \mathrm{H}^{\mathrm{H}} \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.29	$3.096(2)$	144

Symmetry codes: (i) $1+x, y, z$; (ii) $-x,-y, 1-z$.

Compound (II)

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\right]$
$M_{r}=432.18$
Triclinic, $P \overline{1}$
$a=7.56(1) \AA$
$b=9.23(1) \AA$
$c=12.01(2) \AA$
$\alpha=71.29(5)^{\circ}$
$\beta=82.87(5)^{\circ}$
$\gamma=87.44(5)^{\circ}$
$V=787.6(19) \AA^{\circ}$
$Z=2$
$D_{x}=1.822 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=432.18$
Triclinic, $P \overline{1}$
$a=7.56$ (1) Å
$b=9.23$ (1) \AA
$c=12.01$ (2) A
$\alpha=71.29(5)^{\circ}$
$\beta=82.87$ (5) $^{\circ}$
$V=787.6(19) \AA^{3}$

Data collection

Rigaku R-AXIS RAPID
 diffractometer
 ω scans
 Absorption correction: multi-scan
 (ABSCOR; Higashi, 1995)
 $T_{\text {min }}=0.672, T_{\text {max }}=0.878$

7753 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.153$
$S=1.02$
3567 reflections
228 parameters

3567 independent reflections
2402 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-11 \rightarrow 11$
$l=-15 \rightarrow 15$
Mo $K \alpha$ radiation
Cell parameters from 6495
reflections
$\theta=3.1-27.6^{\circ}$
$\mu=1.31 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, colorless $0.30 \times 0.15 \times 0.10 \mathrm{~mm}$

> H-atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0754 P)^{2}\right]$
> where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.002$
> $\Delta \rho_{\max }=0.61 \mathrm{e}^{-3}$
> $\Delta \rho_{\min }=-1.28 \mathrm{e}^{-3}$

Table 3
Selected geometric parameters ($\left({ }^{\circ},^{\circ}\right)$ for (II).

Ag1-N11	$2.320(5)$	$\mathrm{Ag} 1-\mathrm{O} 2$	$2.222(4)$
$\mathrm{Ag} 1-\mathrm{N} 21$	$2.286(5)$	$\mathrm{Ag} 1-\mathrm{O} 61^{\mathrm{iii}}$	$2.703(4)$
$\mathrm{O} 2-\mathrm{Ag} 1-\mathrm{N} 21$	$133.99(15)$	$\mathrm{O} 2-\mathrm{Ag} 1-\mathrm{O} 1^{\mathrm{iii}}$	$95.21(16)$
$\mathrm{O} 2-\mathrm{Ag} 1-\mathrm{N} 11$	$138.13(16)$	$\mathrm{N} 21-\mathrm{Ag} 1-\mathrm{O} 1^{\mathrm{iii}}$	$120.49(15)$
$\mathrm{N} 11-\mathrm{Ag} 1-\mathrm{N} 21$	$80.97(15)$	$\mathrm{N} 11-\mathrm{Ag} 1-\mathrm{O} 1^{\mathrm{iii}}$	$78.52(14)$

Symmetry code: (iii) $x-1, y, z$.

Table 4
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O21-H21 \cdots O2	0.82	1.81	$2.538(6)$	146
O61-H61 OO O1	0.82	1.80	$2.525(6)$	147
N3-H3 \cdots O $^{\text {iv }}$	0.86	2.08	$2.927(6)$	170
C25-H25 $\mathrm{O}^{\mathrm{V}}{ }^{\mathrm{v}}$	0.93	2.60	$3.519(8)$	171

Symmetry codes: (iv) $1-x, 1-y, 1-z$; (v) $x, y-1, z$.

For both (I) and (II), all H atoms were clearly visible in difference Fourier maps. H atoms were then allowed for as riding atoms in the refinements, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA, \mathrm{~N}-\mathrm{H}$ distances of $0.86 \AA$
and $\mathrm{O}-\mathrm{H}$ distances of $0.82 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$ and $1.5 U_{\mathrm{eq}}(\mathrm{O})$.

For compound (I), data collection: RAPID-AUTO (Rigaku, 2003); cell refinement: RAPID-AUTO. For compound (II), data collection: CrystalStructure (Rigaku/MSC, 2004) and CRYSTALS (Watkin et al., 1996); cell refinement: CrystalStructure and CRYSTALS. For both compounds, data reduction: CrystalStructure and CRYSTALS; program(s) used to solve structure: SIR97 (Altomare et al., 1999) and DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: WordPerfect.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1780). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., de Gelder, R., Israel, R. \& Smith, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Bi, W.-H., Sun, D.-F., Cao, R. \& Hong, M.-C. (2002). Acta Cryst. E58, m324m325.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Käll, P. O., Grins, J., Fahlman, M. \& Soderlind, F. (2001). Polyhedron, 20, 27472753.

Kreutz, W. (1998). PCT Int. Appl. (30 pp.) No. WO 9858 639. (Appl. No. WO 1998-EP2939.)
Kristiansson, O. (2000). Acta Cryst. C56, 165-167.
Li, W., Tong, M.-L., Chen, X.-M., Yuan, J.-X. \& Hu, M.-L. (2002). Acta Cryst. E58, m203-m205.
Maoka, T., Ito, Y., Sakushima, A., Ohno, K., Coskun, M. \& Nishibe, S. (1997). Nihon Yukagakkaishi, 46, 1399-1402.
Nomiya, K., Tsuda, K., Sudob, T. \& Oda, M. (1997). J. Inorg. Biochem. 68, 3944.

Rigaku (2003). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Smith, G., Kennard, C. H. L. \& Mak, T. C. W. (1988). Z. Kristallogr. 184, 275280.

Smith, G. \& Reddy, A. N. (1994). Polyhedron, 13, 2425-2430.
Spadaro, J. A., Berger, T. J. B., Barranco, S. D. B., Chapin, S. E. \& Becker, R. O. (1974). Antimicrob. Agents Chemother. 6, 637-642.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Watkin, D. J., Prout, C. K., Carruthers, J. R. \& Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, Oxford, England.
Zhu, H. L., Chen, Q., Peng, W. L., Qi, S. J., Xu, A. J. \& Chen, X. M. (2001). Chin. J. Chem. 19, 263-267.
Zhu, H.-L., Usman, A., Fun, H.-K. \& Wang, X.-J. (2003). Acta Cryst. C59, m218-m220.

